Heat Kernel Smoothing in Irregular Image Domains

نویسندگان

  • Moo K. Chung
  • Yanli Wang
  • Gurong Wu
چکیده

We review heat kernel smoothing techniques for denoising and regressing data in irregularly shaped domains embedded in Euclidean spaces. This is a problem often encountered in functional data analysis and medical imaging. In this chapter, we present a unified mathematical framework based on the eigenfunctions of the Laplace-Beltrami operators defined on irregular domains. Numerical implementation issues will be addressed as well. Various examples will be presented. We also present few new theoretical results on the properties of heat kernel smoothing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images

We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffu...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

Heat Kernel Smoothing Using Laplace-Beltrami Eigenfunctions

We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green's function of an isotropic diffusion equation on a manifold is constructed as a linear combination of the Laplace-Beltraimi operator. The Green's function is then used in constructing heat kernel smoothing. Unlike many previous approaches, diffusion is analytically represented as a series expansi...

متن کامل

Heat Kernel Smoothing of Anatomical Manifolds via Laplace-Beltrami Eigenfunctions Submitted to IEEE Transactions on Medical Imaging

We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green’s function of an isotropic diffusion equation on a manifold is analytically represented using the eigenfunctions of the Laplace-Beltraimi operator. The Green’s function is then used in explicitly constructing heat kernel smoothing as a series expansion of the eigenfunctions. Unlike many previous ...

متن کامل

Heat Kernel Smoothing of Anatomical Manifolds via Laplace-Beltrami Eigenfunctions

We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green’s function of an isotropic diffusion equation on a manifold is analytically represented using the eigenfunctions of the Laplace-Beltraimi operator. The Green’s function is then used in explicitly constructing heat kernel smoothing as a series expansion of the eigenfunctions. Unlike many previous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.07849  شماره 

صفحات  -

تاریخ انتشار 2017